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Sterically protected 1,2-bis[(2,4,6-tri-t-butylphenyl)phos-
phinidene]cyclobuta[l]phenanthrene (4) and its group(6) and
group(10) transition metal complexes were prepared. X-ray
crystallographic analysis of 4 revealed a planar structure of the
diphosphinidenecyclobuta[l]phenanthrene moiety.

Sterically protected 3,4-diphosphinidenecyclobutenes (1:
abbreviated to DPCB),1 bearing an extremely bulky 2,4,6-tri-t-
butylphenyl group (abbreviated as Mes�)2 are unique ligands
of interest,3 because of their relatively rigid framework contain-
ing phosphorus–carbon �-bonds,4 whose low-lying �� orbital3d

plays an important role in catalytic activity of their transition
metal complexes.3b–e

DPCB derivatives containing phenyl groups at the 1,2-posi-
tions, such as 1b, 1c have been reported.1a,3c X-ray crystallo-
graphic data from (E,E)-1b suggest that the aromatic rings at
the 1,2-positions are not co-planar, at least in the crystalline
state.1a Extension of the �-system of the DPCB moiety with a
planar aromatic skeleton is of interest, because the extended
�-conjugation may affect the frontier orbitals, which in turn
affect electronic states and catalytic activity.3d
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Extension of the �-system by incorporation of a planar
fused-ring aromatic system such as phenanthrene is thus of inter-
est. We report here the preparation and properties of diphosphi-
nidenecyclobuta[l]phenanthrene 4 as well as its transition metal
complexes. It should be noted here that cyclobuta[l]phenan-
threne derivatives such as 2 or 3 have rarely been studied,5 in
contrast to the abundant research on phenanthrene derivatives.

Compound 4 was prepared by an ordinary method1b as fol-

lows. Bis-olefination of 56 with a CBr4/PPh3 derived ylide
7 pro-

vided 6. Treatment of 6 with n-BuLi followed by Mes�PHCl8

gave 7. Compound 7 was then treated with n-BuLi (2 molar
ratio) and 1,2-dibromoethane (1 molar ratio) in a dilute THF
solution to give 4 [(E,E)-form] in 10% yield.9

The structure of (E,E)-4 was unambiguously determined by
X-ray crystallography.10 Figure 1 shows a molecular structure of
(E,E)-4, which has a C2 symmetry. The cyclobutaphenanthrene
moiety was almost planar [deviation of atoms C(1)–C(8) and
C(1)�–C(8)� from planarity was within 0.03(1) �A]. Table 1 lists
selected bond lengths of (E,E)-4 as well as those of the related
compounds (E,E)-1b,1a 2,5a and parent phenanthrene (8).11 The
P(1)–C(1), P(1)–C(9), and C(1)–C(1)� bond lengths of 4 are
slightly shorter than those of 1b, while C(1)–C(2) is longer in
4 than in 1b. The bond lengths in the phenanthrene moiety of
4 are in general very similar to those of 2 and 8. The C(1)–
C(1)� bond length for 2, however, is apparently longer than that
for 4: this may be due to the electrostatic repulsion between the
two carbonyl groups. The difference between the bond lengths of
4 and 1bmentioned above suggests that the phenanthrene system
co-planar to the –P=C–C=P– moiety affect the P=C �-bond.

UV–vis spectra of compounds 1a,1c 1b,1a and 4 are shown
in Figure 2. The absorption of 4 at 260–300 seems to be due
to phenanthrene ring system. Preliminary calculation (HF/3-
21G) of a model (p-t-Bu was replaced by H) of (E,E)-4 indicated
that HOMO is �-orbital (rather than n orbital) containing P=C
and phenanthrene �-system, and energy gap between LUMO
and LUMO+1 is smaller than that of the corresponding 1,2-
diphenyl derivative. The absorption of 4 at 340–400 nm appears
to correspond to the � ! �� transitions.

31PNMR spectrum of (E,E)-4 [�P (CDCl3) 173.8] shows a
shift to a lower field, compared with that for (E,E)-1b [�P
(CDCl3) 169.7]. Although chemical shift of the �-carbon (C1
in Figure 1) of (E,E)-4 is similar to that of (E,E)-1b in 13CNMR
spectrum, the �-carbon (C2) shifts to a higher field in (E,E)-4
[(E,E)-4: �(C1) 177.8, �(C2) 149.6; (E,E)-1b1a: �(C1) 176.3,
�(C2) 155.3].

Figure 1. Molecular structure of (E,E)-4, showing the atomic
labeling scheme with thermal ellipsoids (50% probability).
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We then prepared several transition metal complexes of 4 as
follows. Reaction of (E,E)-4 with [group(6) transition metal]-
[(bicyclo[2.2.1]hepta-2,5-diene)tetracarbonyl] gave the corre-
sponding chelate tetracarbonylmetal complexes 9Cr,Mo,W.12

When (E,E)-4 was treated with (RCN)2MCl2 [(M = Pd, R =
Me) or (M = Pt, R = Ph)], chelate complexes 9Pd,Pt were
formed.12 Although the 1JWP of 9W is similar to that of (E,E)-
1b.W(CO)4 complex (1JWP ¼ 257Hz), the 1JPtP of 9Pt is appa-
rently smaller than that of (E,E)-1b.PtCl2 complex (1JPtP ¼
4499:2Hz). The reason for this small 1JPtP value in 9Pt is not
clear at this time. The structure-JPtP relationship is still unclear
in other known DPCB.PtCl2 complexes.

In summary, we have prepared diphosphinidenecyclo-
buta[l]phenanthrene derivative for the first time. A planar struc-
ture was confirmed by X-ray crystallography. Electronic pertur-
bation was shown by UV–vis and NMR spectroscopies. Further
studies on the properties of 4 and 9 are now in progress.
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12 9Cr: Brown solid, mp 165–168 �C (decomp.); 31PNMR (162
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Table 1. Selected bond lengths ( �A) for compounds (E,E)-1b,
(E,E)-4, 2, and 8

(E,E)-4 (E,E)-1ba 2b 8c

P(1)–C(1) 1.669(2) 1.690(8) — —
P(1)–C(9) 1.841(1) 1.861(6) — —
C(1)–C(2) 1.488(2) 1.467(10) 1.489d —
C(2)–C(3) 1.430(2) — 1.423d 1.422d

C(1)–C(1)� 1.515(6) 1.535(8) 1.580 —
C(2)–C(2)� 1.380(2) 1.380(9) 1.362 1.338

aData taken from Ref. 1a. bData taken from Ref. 5a. cData taken from

Ref. 11. dTaking approximate C2v symmetry of the molecule into ac-

count, the corresponding two bond lengths are averaged.

Figure 2. UV–vis spectra of (E,E)-1a, (E,E)-1b, and (E,E)-4 in
CH2Cl2.
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